
INF442 TD

Clustering high-dimensional data

Leo Liberti

liberti@lix.polytechnique.fr

X 2013
April 24, 2015

Motivation

Developing efficient methods is all about choosing the right machine representation for your data.
We all know that a digital picture is encoded as a matrix of pixels, each of which is usually
represented by three bytes of memory to represent what we calll “24 bit color depth”. So all it
boils down to, really, is a very long sequence of binary digits. However, if you picture an image like
this, many of the analog features of pictures disappear, as they are hidden by the binary encoding.

Your brains see images as analog pieces of data, where colors are perceived as chosen from a
continuous palette. In order to represent an image this way, you could think of each pixel as storing
a three real numbers (encoding the intensities of red, green and blue components). The image has
now conveniently become a matrix of real triplets, or, equivalently, a matrix of reals where the size
of each row has been multiplied by three. If you now write the rows (or the columns) one after
the other, the image turns into a vector of real numbers, or, in other words, an element of some
Euclidean space R

n.

Image databases

Now imagine a large image database, think e.g. of Google Images. You query this database by
means of words (encoded as strings), and hope that relevant images will be tagged with your input
string. String tags, however, are just words taken out of context. As such, they may be reasonably
associated with many different meanings. A query for “spaghetti” makes us all think of pasta, but
how about if you were a strictly glutein-free coder assigned to clean up a legacy code from the
1970s? In that case, “spaghetti” would really correspond to “spaghetti code”, i.e. those programs
involving “GOTO” commands bridging functions, loop or test body boundaries. The reverse may
happen: you might look for the terms “spaghetti code” and end up with a bunch of succulent
pasta-related photos because the food semantics is prevalent.

This situation calls for the application of the k-means clustering algorithm you saw in earlier
lectures: how about clustering the results of your query, and presenting a representative per cluster?
Chances are you will save some time by focusing on the most interesting cluster (notice that Google
Images does exactly this in the area above the query results).

1



Setting the stage

Let us assume that all interesting meanings of an image query will appear in the first, say, m ranked
items (if we simply consider the first page off of a Google Image query, m = 10). Let us further
assume that most features of an image are preserved at a 300× 300 scaling, and that the color has
24 bit depth. This calls for a vector with n = 3× 3002 = 2.7× 105 components.

Let us try and run k-means on 10 vectors in R
270000 using Mathematica (Himg is an array

containing the original images):

it takes a little less than half a second. Not too slow, but imagine the scale at which these queries
happen: not too fast either. How can we improve on this?

Approximate clustering

Consider any clustering (in k clusters C1, . . . , Ck) of m vectors {x1, . . . , xm} in R
n: pick any xi and

assume it is assigned to cluster Ch. Do you think it is likely that, if we offset xi by a small ε > 0
in some randomly picked direction, it will change cluster? If you figure the situation in 1D, then
xi should be within ε of the cluster boundary.

C1
C2 C3

C4

xi

ε

How likely is this? Assume the segment of interest has length 1. Since there are k clusters,
there are 2(k − 1) cluster boundaries. So the total length of the boundaries is 2ε(k − 1).

Exercise 1. Prove that the total length of the boundaries is 2ε(k − 1).

Intuitively, we think of a “boundary” to be a very small part of the cluster length. The average
cluster length is 1/k, so ε is assumed to be much smaller than this value, which means that 2ε(k−1)
is much smaller than 1. So the probability of a point being on a boundary is very small indeed.

Now consider that the probability is proportional to the volume of the boundaries with respect
to that of the clusters, and that the volume grows exponentially in function of length (which is
the unit of measure of ε) as n increases. So, whenever the clusters are in some R

n for large n, the
probability that a clustering might be wrong in an ε-approximation is really tiny. In other words,
we are justified in looking for approximations.

2



Exercise 2. Prove that the volume of hypercubes of side r > 1 in R
n increases exponentially in n;

prove the same result for hyperspheres of radius r > 1. Find a family of sets of Rn, parametrized
by the dimension n, such that their volume grows polynomially in n.

The Euclidean norm

The k-means algorithm proceeds iteratively. At each iteration, it assigns the points to a set of
candidate cluster centroids1 according to shortest Euclidean distance; then it proceeds to re-evaluate
the centroids on the basis of the new assignments. It repeats until the assignment keeps changing, or
until a pre-determined termination condition is verified. Most of the CPU time is spent computing
Euclidean distances, which depends on the dimension n of the embedding space R

n.
A good approximation strategy would therefore be lose some dimensions but keep the distances

approximately equal. Is this even possible?

Weirdness in high dimensions

The above suggestion appears preposterous. Take a square in the plane: no matter what line you
choose to project it on (so as to “lose dimensions”), it changes the pairwise distances between
vertices in a seemingly arbitrary manner.

line 1

line 2

However, high dimensional geometry is somewhat magic. For example, the maximal sphere
inscribed in the unit cube occupies a really tiny volume of the cube in high dimensional spaces. As
a more striking example, if you draw the high-dimensional version of the 2D picture below:

1See the lecture notes for the definition.

3



S

which consists of spheres centered at each vertex of the unit cube with radius equal to 0.5, and a
sphere S placed at the center of the cube which touches each of the surrounding spheres, S is not
always within the unit cube in R

n for every n; already for n = 5 it starts protruding out [3].
Even weirder things happen. The phenomenon which is interesting to us is impossible to

visualize and really hard to believe: most of the area of an n-dimensional sphere is concentrated
in a tiny band around the equator, for any equator. The drawing in Fig. 1 (re-drawn from [3])

90% 90%90%

n = 3 n = 11 n = 101

Figure 1: Concentration of measure on the sphere surface.

is a partial visual representation of the concentration of measure phenomenon: it emphasizes the
shaded regions holding 90% of the total spherical area in different dimensions, but it lacks the
insight that this phenomenon holds (concurrently) for any equator.

Surface and volume

Instead of arguing the case for surface, we argue the one for volume, i.e. we claim that most of the
volume of a hypersphere in R

n is concentrated in equatorial band of height t (the shaded bands in
the circles of Fig. 1 above, with t being the distance from the center of the equatorial disc to the
center of the upper band disc), where, for n sufficiently high, t is surprisingly very low indeed.

How does volume help? Intuitively, you might consider that if the claim holds for the volume,
then it might hold for surface area too. Let Vn(r) be the volume of the n-dimensional hypersphere

4



of radius r, and Sn(r) the surface area. Then:

Vn(r) =
πn/2rn

Γ(n/2 + 1)

Sn(r) =
2πn/2rn−1

Γ(n/2)
.

Notationally, we write Vn, Sn whenever r = 1. Accordingly, the volume V dt
n and surface area Sdt

n of
an infinitesimal equatorial band of height dt in an n-dimensional hypersphere of radius 1 are:

V dt
n = Vn−1(1− t2)

n−1
2 dt

Sdt
n = Sn−1(1− t2)

n−2
2 dt.

Their ratio is Vn−1/Sn−1, which is equal to n−1

4

√
1− t2.

Exercise 3. Prove that V dt
n−1

/Sdt
n−1

= n−1

4

√
1− t2.

So V dt
n grows like O(n

√
1− t2Sdt

n ), which shows that, as long as we can show that the rate of
increase of the equatorial band volume with respect to Vn is more than linear in n for fixed t, our
intuition is justified. As it happens, it turns out that this rate of increase is exponential.

We compute the volume of the equatorial band by subtracting the volume of the “polar caps”
(drawn in white in the above drawings). Let us compute their n-dimensional volume: let t0 ≥ 0 be
the distance between the center of the equatorial (great) circle and the small circle which delimits
the equatorial band above the equator. Then the volume we are looking for is given by

Pn =

∫

1

t0

(1− t2)
n−1
2 Vn−1dt.

Exercise 4. Prove that the above formula for Pn is valid.

Since Vn−1 is independent of t, we get

Pn = Vn−1

∫

1

t0

(1− t2)
n−1
2 dt.

We compute an upper bound P̄n for Pn by noticing that ex ≥ x + 1 for all scalars x, and by
evaluating the integral up to ∞:

P̄n = Vn−1

∫ ∞

t0

e−
n−1
2

t2dt ≤ Vn−1

n− 1
e−

(n−1)t20
2

In actual fact, the integral is not a negative exponential, but it can be expressed an-
alytically in function of a complementary error function erfc(x) (see the Wikipedia page
http://en.wikipedia.org/wiki/Error_function), which has the property that erfc(x) ≤ e−x2

.
Finally, we can give an upper bounding estimate p̄ for the ratio p between the volume of the

polar caps to the total volume of the hypersphere. We have p = 2Pn

Vn
≤ 2P̄n

Vn
= p̄, where

p̄ =
n√
π
e−

n−1
2

t2 .

5

http://en.wikipedia.org/wiki/Error_function


Exercise 5. Prove the validity of the formula for p̄.

The expression for p̄ = p̄(n, t) above shows that p̄ decreases exponentially as both n and t
increase. We can invert p̄(t) and derive t(p̄) as:

t =

√

2

1− n
ln

(√
π

n
p̄

)

.

Setting a target p̄ value to 0.9, the plot of t (the height of half an equatorial band containing at
most 90% of the hypersphere volume) w.r.t. the dimension n is shown below.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

This plot substantiates the claim that most of the volume of the hypersphere is concentrated around
a narrow equatorial band. As we mentioned at the beginning of this section, this also applies to
the surface area.

Low distortion approximations. . .

Let X be our image database (with |X| = m), represented as a finite set of vectors in R
n. Since we

mean to “lose dimensions”, we are looking for a mapping A : Rn → R
ℓ, where ℓ is hopefully much

smaller than n, such that there is some ε > 0 tolerance ensuring the following condition:

∀x, y ∈ X (1− ε)‖x− y‖22 ≤ ‖Ax−Ay‖22 ≤ (1 + ε)‖x− y‖22. (1)

In other words, the image of X under A roughly preserves Euclidean pairwise distances. If Eq. (1)
holds, A is called a low distortion approximation of X.

. . . are actually very common

It turns out that such approximations are not hard to come by. In fact, in high dimensions, it suffices
to sample random ℓ× n matrices, component by component, from a standard normal distribution.

Specifically, we first decide on a tolerance ε ∈ (0, 0.5), and, for technical reasons, we set ℓ to
the integer rounding of cε−2 logm, where c is a certain constant (according to [4], c ≈ 1.8 on the
basis of empirical tests). Note that ℓ does not depend on the dimension n of the original space, but

6



only on ε and on the number of vectors m. It is quadratic in 1/ε, but it is logarithmic in m, which
means that it scales very well with respect to the growth of the database. For m = 10 and ε = 0.1
we obtain2 ℓ = 432: a considerable dimensional reduction with respect to n = 270000. If we can
build such an A, we will certainly be able to reduce our k-means running time considerably.

The Johnson-Lindenstrauss operator

We construct A as follows:

1 void JLOperator (double** A, int l, int n) {

2 for(int i = 0; i < l; i++) {

3 for(int j = 0; j < m; j++) {

4 A[i][j] = StdNormalRandom () / sqrt (l);

5 }

6 }

7 }

so each component of A is drawn from a standard normal distribution N(0, 1), and then scaled by√
ℓ. A is called a Johnson-Lindenstrauss operator because this type of low-distortion approximation

was introduced by Johnson and Lindenstrauss [2] as a technical lemma (henceforth called the
Johnson-Lindenstrauss Lemma) necessary to prove another theorem.

The scaling is due to the same reason that the diagonal in a square is
√
2 and a diagonal in an

n-dimensional cube is
√
n. Now let us focus on the normal distribution part. Pick any unit vector

u in R
n, and consider ‖Au‖2

2
. Since u is a unit vector, ‖u‖2 = 1. We show that E(‖Au‖2

2
), the

expected value of ‖Au‖2
2
with respect to the random variable components of A, is also 1. In fact

we claim that E(‖Au‖2
2
) = E(‖u‖2

2
).

Let Au = v = (v1, . . . , vℓ). Then for each i ≤ ℓ we have vi =
∑

j≤nAijuj, so

E(vi) =
∑

j≤n

E(Aijuj) =
∑

j≤n

E(Aij)uj =
∑

j≤n

0uj = 0,

and

Var(vi) =
∑

j≤n

Var(Aijuj) =
∑

j≤n

Var(Aij)u
2

j =
∑

j≤n

u2j
ℓ

=
1

ℓ
‖u‖22.

Exercise 6. Prove that E(Aijuj) = E(Aij)uj for each i, j.

Exercise 7. Why is E(Aij) = 0 for all i, j?

Now we have 1

ℓ = Var(vi) = E(v2i − (E(vi))
2) = E(v2i − 0) = E(v2i ). Hence:

E(‖Au‖22) = E(‖v‖22) = E





∑

i≤ℓ

v2i



 =
∑

i≤ℓ

E(v2i ) =
∑

i≤ℓ

‖u‖2
2

ℓ
= ‖u‖22,

as claimed.

Exercise 8. In the paragraph above, we used the fact that Var(vi) =
1

ℓ for all i. However, we had
proved that in fact Var(vi) =

1

ℓ ‖u‖22. Why are these the same?

2The result of the computation is 414; we obtain 432 by using more digits in the decimal expansion of c.

7



We showed previously that p̄ decreases exponentially as e−n. Since the argument works for any
equator, we choose the equator given by setting to zero the last component of the unit vector u,
namely un = 0. Then the polar caps area can be expressed as:

An
t = {u ∈ R

n | ‖u‖2 = 1 ∧ |un| ≥ t}.

Letting µ(·) be the spherical surface measure function, we have that µ(An
t ) is O(e−

n−2
2

t2). Now,
however, we are not considering the measure on the unit sphere in R

n, but a different family of
sets:

Bn
t = {u ∈ R

n | ‖u‖2 = 1 ∧
∣

∣‖Au‖22 − 1
∣

∣ ≥ t}.

We claim that the Lebesgue measure λ in R
ℓ is such that λ(Bn

t ) is O(e−
ℓ−2
2

t2), and in particular
O(e−ℓ) for fixed t.

Exercise 9. Prove the claim (this is a difficult exercise).

OAu

Figure 2: Stereographic projection from the sphere surface to a subspace. The blue dots are on the
sphere, the red dots are on the subspace.

At this point we look back at Fig. 1, where the equator is the mean, and the area in the band
around it is a probability of sampling points within a band of thickness t of the mean. If we want
a 90% chance of sampling points at most t far from the mean, we notice that, as n increases,
we can stay closer and closer to the mean. In other words, the variance of this distribution gets
smaller and smaller as n grows. The distribution in question is over the spherical surface, but by
the above argument we can map it onto the relevant distribution over the projected subspace W .
We now remark that an equatorial band of height t on the sphere corresponds to a band of width
t around ‖Au‖2

2
= 1. Thus, concentration of measure on the sphere implies that ‖Au‖2

2
is sharply

concentrated around its mean.
Since A is a matrix, its action on X is linear. Hence, for x, y ∈ X we have:

‖Ax−Ay‖22 = ‖A(x− y)‖22 = ‖x− y‖22‖Au‖22 (2)

where u = x−y
‖x−y‖2 , which ensures ‖u‖2 = 1. By our reasoning above, the distribution of ‖Ax−Ay‖2

2

is very close to its mean ‖x− y‖2
2
with high probability.

8



Exercise 10. Why are we claiming that E(‖Ax−Ay‖2
2
) = ‖x− y‖2

2
?

The technical choice of ℓ (obtained by a reasoning not dissimilar to the derivation of the formula
for p̄, but with different bounding techniques) ensures that Eq. (1) holds with probability more or
less 1− eℓ/ε

2
, which tends to 1 as ℓ increases, assuming ε is constant.

Random sampling from a standard normal distribution

We still have to explain how to implement the function StdNormalRandom() in the JLOperator()
code given above. The trick is to sample from two independently uniformly distributed random
variables U1, U2 from (0, 1) and, via a transformation to polar coordinates, obtain two independently
normally distributed random variables Z0, Z1. The following picture, obtained from the Wikipedia
page for the Box-Muller transform, illustrates the change of coordinates graphically, and shows that
the marginal distributions are normal. In Fig. 3, the samples from U1, U2 are drawn in the unit

Figure 3: Picture taken from Wikipedia 〈http://en.wikipedia.org/wiki/Box-Muller_transform〉.

square cornered at the origin, and marked with different colors. Each of these points are mapped
(with the same color) through the two coordinate changes3:

Z1 = R cosΘ =
√

−2 lnU1 cos(2πU2) (3)

Z2 = R sinΘ =
√

−2 lnU1 sin(2πU2), (4)

where R,Θ are the variable names for the intermediate coordinate change R2 = −2 lnU1 and
Θ = 2πU2.

Exercise 11. Show that Z0, Z1 are independent normally distributed random variables.

So in order to yield a sample from N(0, 1) we really must compute two samples from two
identically independently normally distributed random variables Z1, Z2.

3Note that Z1 is shown as z0 and Z2 as z1 in the picture.

9

http://en.wikipedia.org/wiki/Box-Muller_transform


In practice

In practice, the overall procedure is:

1. sample the components Aij of A from a standard normal distribution N(0, 1) as described
above, using a uniform pseudorandom number generator;

2. multiply A by the scalar 1√
ℓ
;

3. compute the smaller-dimensional set Y = AX ⊆ R
ℓ and either trust that the probability

guarantee holds, or verify that Eq. (1) holds;

4. if it does not, try again with another randomly sampled matrix A;

5. compute the projected point set Y = AX;

6. run k-means on Y .

As shown below (again, using Mathematica), the clustering is the same, but it is computed in a
fraction of the time.

Extensions

Sparser projection matrices

Achlioptas [1] proved that it suffices to sample projection matrix coefficients Aij from very coarse
approximations of the normal distribution. For example, the following is shown to work (with some
minor differences in the definition of ℓ):

Aij =

√

3

ℓ







+1 with probability 1

6

0 with probability 2

3

−1 with probability 1

6
.

(5)

Such a choice yields a very sparse A, which in turn yields computational savings in the matrix
times vector multiplication phase.

Other types of projection

A very common type of projection method is Principal Component Analysis (PCA). It should be
seen as a heuristic, since it does not provide an approximation ratio. The aim of PCA is to project
a set of points in a certain Euclidean space to a Euclidean space of given dimension ℓ. So the input
to PCA is a set X of m points in R

n, and the target dimension ℓ ∈ N.

Exercise 12. Describe the PCA algorithm (look for information online), justifying each step.

10



References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary
choins. Journal of Computer and System Sciences, 66:671–687, 2003.

[2] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In
G. Hedlund, editor, Conference in Modern Analysis and Probability, volume 26 of Contemporary
Mathematics, pages 189–206, Providence, 1984. AMS.

[3] J. Matousšek. Lectures on Discrete Geometry. Springer, New York, 2002.

[4] S. Venkatasubramanian and Q. Wang. The Johnson-Lindenstrauss transform: An empirical
study. In Algorithm Engineering and Experiments, volume 13 of ALENEX, pages 164–173,
Providence, 2011. SIAM.

11


